IP | Country | PORT | ADDED |
---|---|---|---|
50.169.222.243 | us | 80 | 50 minutes ago |
115.22.22.109 | kr | 80 | 50 minutes ago |
50.174.7.152 | us | 80 | 50 minutes ago |
50.171.122.27 | us | 80 | 50 minutes ago |
50.174.7.162 | us | 80 | 50 minutes ago |
47.243.114.192 | hk | 8180 | 50 minutes ago |
72.10.160.91 | ca | 29605 | 50 minutes ago |
218.252.231.17 | hk | 80 | 50 minutes ago |
62.99.138.162 | at | 80 | 50 minutes ago |
50.217.226.41 | us | 80 | 50 minutes ago |
50.174.7.159 | us | 80 | 50 minutes ago |
190.108.84.168 | pe | 4145 | 50 minutes ago |
50.169.37.50 | us | 80 | 50 minutes ago |
50.223.246.238 | us | 80 | 50 minutes ago |
50.223.246.239 | us | 80 | 50 minutes ago |
50.168.72.116 | us | 80 | 50 minutes ago |
72.10.160.174 | ca | 3989 | 50 minutes ago |
72.10.160.173 | ca | 32677 | 50 minutes ago |
159.203.61.169 | ca | 8080 | 50 minutes ago |
209.97.150.167 | us | 3128 | 50 minutes ago |
Simple tool for complete proxy management - purchase, renewal, IP list update, binding change, upload lists. With easy integration into all popular programming languages, PapaProxy API is a great choice for developers looking to optimize their systems.
Quick and easy integration.
Full control and management of proxies via API.
Extensive documentation for a quick start.
Compatible with any programming language that supports HTTP requests.
Ready to improve your product? Explore our API and start integrating today!
And 500+ more programming tools and languages
It is necessary to go to "Settings", select "WiFi", then specify the network for which you want to disable the proxy. After that, tap on "Proxy settings" and check "Off". This option is valid for iOS version 10 and higher.
In AnyDesk, in order to ensure maximum security of transmitted traffic, you can use proxies, including encryption of traffic. The setting is made through the regular menu of the application. You will need to go to "Options", select "Connection", specify the proxy and port number. Connection is made automatically after that.
Building a chain of proxies in Selenium involves configuring a WebDriver with a Proxy object that represents a chain of proxies. Here's an example using Python with Selenium and the Chrome WebDriver:
from selenium import webdriver
from selenium.webdriver.common.proxy import Proxy, ProxyType
# Create a Proxy object for the first proxy in the chain
proxy1 = Proxy()
proxy1.http_proxy = "http://proxy1.example.com:8080"
proxy1.ssl_proxy = "http://proxy1.example.com:8080"
proxy1.proxy_type = ProxyType.MANUAL
# Create a Proxy object for the second proxy in the chain
proxy2 = Proxy()
proxy2.http_proxy = "http://proxy2.example.com:8080"
proxy2.ssl_proxy = "http://proxy2.example.com:8080"
proxy2.proxy_type = ProxyType.MANUAL
# Create a Proxy object for the final proxy in the chain
proxy3 = Proxy()
proxy3.http_proxy = "http://proxy3.example.com:8080"
proxy3.ssl_proxy = "http://proxy3.example.com:8080"
proxy3.proxy_type = ProxyType.MANUAL
# Create a chain of proxies
proxies_chain = f"{proxy1.proxy, proxy2.proxy, proxy3.proxy}"
# Set up ChromeOptions with the proxy chain
chrome_options = webdriver.ChromeOptions()
chrome_options.add_argument(f"--proxy-server={proxies_chain}")
# Create the WebDriver with ChromeOptions
driver = webdriver.Chrome(options=chrome_options)
# Now you can use the driver with the proxy chain for your automation tasks
driver.get("https://example.com")
# Close the browser window when done
driver.quit()
In this example:
Three Proxy objects (proxy1, proxy2, and proxy3) are created, each representing a different proxy in the chain. You need to replace the placeholder URLs (http://proxy1.example.com:8080, etc.) with the actual proxy server URLs.
The ProxyType.MANUAL option is used to indicate that the proxy settings are configured manually.
The proxies_chain variable is a comma-separated string representing the chain of proxies.
The --proxy-server option is added to ChromeOptions to specify the proxy chain.
A Chrome WebDriver instance is created with the configured ChromeOptions.
Working with dynamically loaded buttons and forms on a webpage in Selenium can be challenging, as these elements may not be present when the page initially loads. To interact with these elements, you'll need to wait for them to become available.
You can use the following strategies to work with dynamically loaded elements in Selenium:
Explicit waits:
Explicit waits allow you to wait for a specific element to become available before interacting with it. This can be useful when working with dynamically loaded elements, as you can wait for the element to appear, become clickable, or disappear.
Here's an example using Python:
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
driver = webdriver.Chrome()
driver.get('your_url')
# Replace 'dynamic_button_id' with the ID of the dynamic button
dynamic_button = WebDriverWait(driver, 10).until(
EC.element_to_be_clickable((By.ID, 'dynamic_button_id'))
)
dynamic_button.click()
# Rest of your code
driver.quit()
In this example, we use the WebDriverWait class to wait for the dynamic_button_id element to become clickable. The element_to_be_clickable() method takes a tuple containing the locator strategy and the element's identifier. The 10 parameter specifies the maximum amount of time to wait for the element, in seconds.
1. Implicit waits:
Implicit waits set a global timeout for the WebDriver to wait for elements to become available before throwing a NoSuchElementException. While implicit waits can be useful for some scenarios, they are not recommended for waiting for elements to become clickable, as they can lead to unexpected behavior.
2. Polling:
Polling is a technique where you repeatedly check for the presence of an element at a specific interval. This can be done using a loop and the WebDriverWait class. However, polling can be inefficient and may not be the best solution for waiting for elements to become available.
3. JavaScript execution:
In some cases, you may need to use JavaScript to interact with dynamically loaded elements. You can use the execute_script() method to run JavaScript code that interacts with the webpage.
Here's an example of using JavaScript to click a dynamic button:
from selenium import webdriver
from selenium.webdriver.common.by import By
driver = webdriver.Chrome()
driver.get('your_url')
# Replace 'dynamic_button_id' with the ID of the dynamic button
dynamic_button = driver.find_element(By.ID, 'dynamic_button_id')
driver.execute_script("arguments[0].click();", dynamic_button)
# Rest of your code
driver.quit()
In this example, we use the execute_script() method to run a JavaScript code that clicks the dynamic_button_id element.
When working with dynamically loaded elements, it's essential to use the appropriate waiting strategy to ensure that your code interacts with the elements only when they are available and in the correct state.
Checking data integrity in the User Datagram Protocol (UDP) can be challenging, as UDP is a connectionless protocol and does not provide built-in mechanisms for ensuring data integrity, such as error detection or correction. However, there are several methods to check data integrity in UDP:
1. Checksum: UDP uses a simple checksum mechanism to detect errors in transmitted data. The sender calculates the checksum of the UDP header and data using a cyclic redundancy check (CRC) algorithm. The checksum value is then included in the UDP header and transmitted along with the data. Upon receiving the data, the receiver calculates the checksum of the received data and compares it to the checksum value in the UDP header. If the values do not match, the receiver can assume that an error has occurred during transmission. However, this checksum mechanism does not protect against all types of errors or attacks.
2. Application-level checksum: Since UDP does not provide robust error detection, many applications implement their own checksum or hash functions at the application layer to verify data integrity. For example, when transmitting sensitive data, an application can calculate a hash value of the data using an algorithm like MD5 or SHA-1 and include the hash value in the transmitted data. The receiver can then calculate the hash value of the received data and compare it to the included value to ensure data integrity.
3. Secure UDP: To ensure data integrity and security, you can use a secure version of UDP, such as Datagram Transport Layer Security (DTLS) or Secure Real-time Transport Protocol (SRTP). These protocols provide authentication, encryption, and integrity checks to protect data during transmission.
4. Application-level protocols: Some applications use specific protocols that provide additional data integrity checks, such as the Real-time Transport Protocol (RTP) for audio and video streaming. RTP includes sequence numbers and timestamps to help detect lost or out-of-order packets and ensure proper playback.
In summary, checking data integrity in UDP can be achieved through various methods, such as using the built-in checksum mechanism, implementing application-level checksums or hashes, employing secure UDP protocols, or utilizing application-level protocols that provide additional data integrity checks.
What else…