IP | Country | PORT | ADDED |
---|---|---|---|
50.122.86.118 | us | 80 | 17 minutes ago |
203.99.240.179 | jp | 80 | 17 minutes ago |
152.32.129.54 | hk | 8090 | 17 minutes ago |
203.99.240.182 | jp | 80 | 17 minutes ago |
50.218.208.14 | us | 80 | 17 minutes ago |
50.174.7.156 | us | 80 | 17 minutes ago |
85.8.68.2 | de | 80 | 17 minutes ago |
194.219.134.234 | gr | 80 | 17 minutes ago |
89.145.162.81 | de | 1080 | 17 minutes ago |
212.69.125.33 | ru | 80 | 17 minutes ago |
188.40.59.208 | de | 3128 | 17 minutes ago |
5.183.70.46 | ru | 1080 | 17 minutes ago |
194.182.178.90 | bg | 1080 | 17 minutes ago |
83.1.176.118 | pl | 80 | 17 minutes ago |
62.99.138.162 | at | 80 | 17 minutes ago |
158.255.77.166 | ae | 80 | 17 minutes ago |
41.230.216.70 | tn | 80 | 17 minutes ago |
194.182.163.117 | ch | 1080 | 17 minutes ago |
153.101.67.170 | cn | 9002 | 17 minutes ago |
103.216.50.224 | kh | 8080 | 17 minutes ago |
Simple tool for complete proxy management - purchase, renewal, IP list update, binding change, upload lists. With easy integration into all popular programming languages, PapaProxy API is a great choice for developers looking to optimize their systems.
Quick and easy integration.
Full control and management of proxies via API.
Extensive documentation for a quick start.
Compatible with any programming language that supports HTTP requests.
Ready to improve your product? Explore our API and start integrating today!
And 500+ more programming tools and languages
Changing the WebRTC (Web Real-Time Communication) value in Selenium involves modifying the browser's configuration options. WebRTC settings are not directly exposed through Selenium WebDriver, so you need to use browser-specific options or preferences.
Below are examples for changing WebRTC settings in Chrome and Firefox using Selenium in Python. Keep in mind that the availability of certain options may vary depending on the browser version, and these examples may need adjustments based on your specific requirements.
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
chrome_options = Options()
# Disable WebRTC
chrome_options.add_argument('--disable-webrtc')
# Other options (customize as needed)
# chrome_options.add_argument('--use-fake-device-for-media-stream')
# chrome_options.add_argument('--use-fake-ui-for-media-stream')
driver = webdriver.Chrome(chrome_options=chrome_options)
# Your Selenium script...
driver.quit()
In this example, --disable-webrtc is used to disable WebRTC. You can explore other Chrome command-line options related to WebRTC here.
Firefox
from selenium import webdriver
from selenium.webdriver.firefox.options import Options
firefox_options = Options()
# Disable WebRTC
firefox_options.set_preference('media.peerconnection.enabled', False)
# Other preferences (customize as needed)
# firefox_options.set_preference('media.navigator.streams.fake', True)
# firefox_options.set_preference('media.navigator.permission.disabled', True)
driver = webdriver.Firefox(firefox_options=firefox_options)
# Your Selenium script...
driver.quit()
In this example, media.peerconnection.enabled is set to False to disable WebRTC in Firefox. Additional preferences can be adjusted based on your needs. You can find more Firefox preferences related to WebRTC here.
Remember that changing browser preferences may have implications on the behavior of your application, and modifying settings like WebRTC should be done responsibly and in accordance with the terms of service of the websites you are interacting with.
To run Firefox with Selenium and connected extensions, you'll need to use the FirefoxDriverService and FirefoxOptions. You can also set the path to the Firefox executable and the path to the extensions' .xpi files using the FirefoxBinary and FirefoxProfile classes. Here's an example of how to do this:
Install the required NuGet packages:
Install-Package OpenQA.Selenium.Firefox.WebDriver -Version 3.141.0
Install-Package OpenQA.Selenium.Support.UI -Version 3.141.0
Create a method to add extensions to the Firefox profile:
using OpenQA.Selenium;
using OpenQA.Selenium.Firefox;
using System.IO;
using System.Linq;
public static IWebDriver CreateFirefoxDriverWithExtensions(string[] extensionPaths)
{
var firefoxOptions = new FirefoxOptions();
var firefoxBinary = new FirefoxBinary(Path.GetDirectoryName(FirefoxDriverService.DefaultServicePath));
var firefoxProfile = new FirefoxProfile();
// Add extensions to the Firefox profile
foreach (var extensionPath in extensionPaths)
{
var extensionFile = new FileInfo(extensionPath);
if (extensionFile.Exists)
{
firefoxProfile.AddExtension(extensionPath);
}
}
firefoxOptions.BinaryLocation = firefoxBinary.Path;
firefoxOptions.Profile = firefoxProfile;
// Start the FirefoxDriverService with the specified Firefox binary
var driverService = FirefoxDriverService.CreateDefaultService(firefoxBinary.Path, FirefoxDriverService.DefaultPort);
driverService.EnableVerboseLogging = true;
// Create the FirefoxDriver with the specified options
var driver = new FirefoxDriver(driverService, firefoxOptions);
return driver;
}
Use the CreateFirefoxDriverWithExtensions method in your test code:
using OpenQA.Selenium;
using System;
namespace SeleniumFirefoxExtensionsExample
{
class Program
{
static void Main(string[] args)
{
// Paths to the extensions' .xpi files
string[] extensionPaths = new[]
{
@"path\to\extension1.xpi",
@"path\to\extension2.xpi"
};
// Create the FirefoxDriver with connected extensions
using (var driver = CreateFirefoxDriverWithExtensions(extensionPaths))
{
// Set up the WebDriver
driver.Manage().Window.Maximize();
// Navigate to the target web page
driver.Navigate().GoToUrl("https://www.example.com");
// Perform any additional actions as needed
// Close the browser
driver.Quit();
}
}
}
}
In this example, we first create a method called CreateFirefoxDriverWithExtensions that takes an array of extension paths as input. Inside the method, we set up the FirefoxOptions, FirefoxBinary, and FirefoxProfile to include the specified extensions. Then, we start the FirefoxDriverService with the specified Firefox binary and create the FirefoxDriver with the specified options.
In the test code, we call the CreateFirefoxDriverWithExtensions method with the paths to the extensions' .xpi files and use the returned IWebDriver instance to interact with the browser.
Remember to replace "path\to\extension1.xpi" and "path\to\extension2.xpi" with the actual paths to the extensions' .xpi files you want to connect.
Checking data integrity in the User Datagram Protocol (UDP) can be challenging, as UDP is a connectionless protocol and does not provide built-in mechanisms for ensuring data integrity, such as error detection or correction. However, there are several methods to check data integrity in UDP:
1. Checksum: UDP uses a simple checksum mechanism to detect errors in transmitted data. The sender calculates the checksum of the UDP header and data using a cyclic redundancy check (CRC) algorithm. The checksum value is then included in the UDP header and transmitted along with the data. Upon receiving the data, the receiver calculates the checksum of the received data and compares it to the checksum value in the UDP header. If the values do not match, the receiver can assume that an error has occurred during transmission. However, this checksum mechanism does not protect against all types of errors or attacks.
2. Application-level checksum: Since UDP does not provide robust error detection, many applications implement their own checksum or hash functions at the application layer to verify data integrity. For example, when transmitting sensitive data, an application can calculate a hash value of the data using an algorithm like MD5 or SHA-1 and include the hash value in the transmitted data. The receiver can then calculate the hash value of the received data and compare it to the included value to ensure data integrity.
3. Secure UDP: To ensure data integrity and security, you can use a secure version of UDP, such as Datagram Transport Layer Security (DTLS) or Secure Real-time Transport Protocol (SRTP). These protocols provide authentication, encryption, and integrity checks to protect data during transmission.
4. Application-level protocols: Some applications use specific protocols that provide additional data integrity checks, such as the Real-time Transport Protocol (RTP) for audio and video streaming. RTP includes sequence numbers and timestamps to help detect lost or out-of-order packets and ensure proper playback.
In summary, checking data integrity in UDP can be achieved through various methods, such as using the built-in checksum mechanism, implementing application-level checksums or hashes, employing secure UDP protocols, or utilizing application-level protocols that provide additional data integrity checks.
Both versions of the protocol, at first glance, are able to provide anonymity on the Internet, as well as bypass all kinds of blockages. In addition, they are not only suitable for online entertainment, but also for work (study). This is what unites them to some extent, but there are still more differences. These are primarily the number of IP addresses, the cost of rent, appearance, connection speed, ping, and security. The IPv4 protocol, developed in the 1980s, is a more outdated model with a number of significant problems, including inefficient routing.
Open the browser settings and go to the "Advanced" section. Click on "System" and then, in the window that opens, click on "Open proxy settings for computer". A window will appear in front of you, showing all the current settings. Another way to find out the http proxy is to download and install the SocialKit Proxy Checker utility on your computer.
What else…