IP | Country | PORT | ADDED |
---|---|---|---|
82.119.96.254 | sk | 80 | 19 minutes ago |
50.174.7.162 | us | 80 | 19 minutes ago |
50.171.122.24 | us | 80 | 19 minutes ago |
72.10.164.178 | ca | 13327 | 19 minutes ago |
50.217.226.47 | us | 80 | 19 minutes ago |
189.202.188.149 | mx | 80 | 19 minutes ago |
50.221.230.186 | us | 80 | 19 minutes ago |
67.43.228.250 | ca | 5349 | 19 minutes ago |
50.171.122.27 | us | 80 | 19 minutes ago |
50.217.226.42 | us | 80 | 19 minutes ago |
50.221.74.130 | us | 80 | 19 minutes ago |
194.219.134.234 | gr | 80 | 19 minutes ago |
176.215.76.192 | ru | 1080 | 19 minutes ago |
50.223.246.238 | us | 80 | 19 minutes ago |
202.6.233.133 | id | 80 | 19 minutes ago |
50.171.122.28 | us | 80 | 19 minutes ago |
50.223.246.237 | us | 80 | 19 minutes ago |
5.183.70.46 | ru | 1080 | 19 minutes ago |
45.191.13.241 | br | 4153 | 19 minutes ago |
83.1.176.118 | pl | 80 | 19 minutes ago |
Simple tool for complete proxy management - purchase, renewal, IP list update, binding change, upload lists. With easy integration into all popular programming languages, PapaProxy API is a great choice for developers looking to optimize their systems.
Quick and easy integration.
Full control and management of proxies via API.
Extensive documentation for a quick start.
Compatible with any programming language that supports HTTP requests.
Ready to improve your product? Explore our API and start integrating today!
And 500+ more programming tools and languages
The pyqt5.schedule error you're encountering in Selenium is likely caused by a conflict between the pyqt5.schedule and the Selenium WebDriver. This can happen when using the pyqt5.schedule module to schedule tasks while the Selenium WebDriver is running, as both modules use the same underlying thread pool.
To resolve this issue, you can try the following solutions:
Disable the pyqt5.schedule module:
If you're using the pyqt5.schedule module for scheduling tasks, you can try disabling it and using an alternative method for scheduling tasks, such as the threading module in Python.
Use a different scheduler:
You can try using an alternative scheduler, such as the schedule module, to schedule tasks without causing a conflict with the Selenium WebDriver. To do this, first, install the schedule module using pip:
pip install schedule
Then, use the schedule module to schedule tasks instead of the pyqt5.schedule module.
Update the Selenium WebDriver:
Make sure you're using the latest version of the Selenium WebDriver. Updating to the latest version may resolve any conflicts with the pyqt5.schedule module.
Use a different GUI framework:
If you're using PyQt for your application and Selenium for web automation, consider using a different GUI framework for your application that doesn't conflict with Selenium.
If you've tried all these solutions and are still encountering the pyqt5.schedule error, please provide more information about your system, including the operating system, PyQt version, and the specific error message or problem you're facing. This will help diagnose the issue further and find a suitable solution.
To pass a Selenium WebDriver instance to a Python decorator, you can create a custom decorator that takes the WebDriver instance as an argument. Here's an example of how to do this:
First, create a custom decorator that accepts the WebDriver instance:
def webdriver_decorator(driver):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
return func(driver, *args, **kwargs)
return wrapper
return decorator
Create a function that takes the WebDriver instance as an argument and performs the desired action:
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
def my_function(driver, search_query):
driver.get('https://example.com')
search_box = WebDriverWait(driver, 10).until(EC.visibility_of_element_located((By.ID, 'search-box')))
search_box.send_keys(search_query)
search_box.send_keys(Keys.RETURN)
Apply the custom decorator to the function and pass the WebDriver instance:
@webdriver_decorator
def my_function_with_decorator(driver, search_query):
return my_function(driver, search_query)
Now you can use the decorated function and pass the WebDriver instance:
driver = webdriver.Chrome()
driver.get('https://example.com')
search_results = my_function_with_decorator(driver, 'your search query')
In this example, the my_function_with_decorator function is the same as the my_function function, but it is wrapped by the webdriver_decorator. When you call my_function_with_decorator, you need to pass the WebDriver instance as the first argument.
To count the number of lost packets over UDP, you can use a combination of network monitoring tools and custom scripts. Here's a step-by-step guide to help you achieve this:
1. Install a network monitoring tool:
You can use a network monitoring tool like Wireshark, tcpdump, or ngrep to capture the UDP packets on your network. These tools allow you to analyze the packets and identify lost packets.
2. Capture UDP packets:
Use the network monitoring tool to capture the UDP packets on the interface where the communication is taking place. For example, if you're monitoring a local server, you might use tcpdump with the following command:
tcpdump -i eth0 udp and host 192.168.1.100
Replace eth0 with the appropriate interface name and 192.168.1.100 with the IP address of the server you're monitoring.
3. Analyze the captured packets:
Once you have captured the UDP packets, analyze them to identify the lost packets. You can do this by looking for the sequence numbers in the UDP packets. If the sequence number of a packet is not consecutive to the previous packet, it means the packet was lost.
4. Write a custom script:
You can write a custom script in a language like Python to parse the captured packets and count the lost packets. Here's an example of a simple Python script that counts lost packets:
import re
def count_lost_packets(packet_data):
sequence_numbers = re.findall(r'UDP, src port \((\d+)\)', packet_data)
lost_packets = 0
for i in range(1, len(sequence_numbers)):
if int(sequence_numbers[i]) != int(sequence_numbers[i - 1]) + 1:
lost_packets += 1
return lost_packets
# Read the captured packets from a file
with open('captured_packets.txt', 'r') as file:
packet_data = file.read()
# Count the lost packets
lost_packets = count_lost_packets(packet_data)
print(f'Number of lost packets: {lost_packets}')
Replace 'captured_packets.txt' with the path to the file containing the captured packets.
5. Run the script:
Run the script to count the lost packets. The script will output the number of lost packets in the captured data.
To read a video stream received via UDP, you can follow these steps:
1. Choose a programming language: Python, C++, Java, or any other language that supports UDP communication.
2. Set up a UDP server: Create a UDP server that listens for incoming video stream data. This server will receive the video stream packets and store them in memory or on disk.
3. Parse the UDP packets: The video stream data will be sent in a series of UDP packets. You will need to parse these packets to extract the video frames and reassemble them into a complete video stream.
4. Decode the video frames: Once you have the video frames, you need to decode them to convert them from their compressed format (e.g., H.264, MPEG-4) to a raw video format that can be displayed.
5. Display or save the video stream: After decoding the video frames, you can either display them in real-time or save them to a file for later playback.
Here's an example of how you might implement this in Python using the socket and cv2 libraries:
import socket
import cv2
import struct
# Create a UDP server socket
server_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
server_socket.bind(('0.0.0.0', 12345))
# Variables to store the video stream
frame_length = 0
frame_data = b''
# Loop to receive video stream packets
while True:
data, address = server_socket.recvfrom(1024)
frame_length += struct.unpack('I', data[:4])[0]
frame_data += data[4:]
# Check if we have enough data for a complete frame
if frame_length > 0 and len(frame_data) >= frame_length:
# Extract the video frame
frame = cv2.imdecode(np.frombuffer(frame_data[:frame_length], dtype=np.uint8), cv2.IMREAD_COLOR)
# Display or save the video frame
cv2.imshow('Video Stream', frame)
cv2.waitKey(1)
# Reset variables for the next frame
frame_length = 0
frame_data = b''
Note that this is a simplified example and assumes that the video stream is using a specific protocol for packetization and framing. In practice, you will need to adapt this code to the specific format of the video stream you are receiving. Additionally, you may need to handle network errors, packet loss, and other issues that can arise during UDP communication.
To know the type of proxy, you need to identify the communication protocol it uses. Proxies can be categorized based on the protocol they support, such as HTTP, HTTPS, SOCKS, or other specific protocols. Here's how to determine the type of proxy you are using or working with:
1. Check the proxy settings: If you are using a proxy on your device or within an application, examine the proxy settings to see which protocol is specified. For example, the settings might indicate "HTTP Proxy," "HTTPS Proxy," or "SOCKS Proxy."
2. Observe the proxy URL: The proxy URL can sometimes indicate the type of proxy. For example, an HTTP proxy URL usually starts with "http://" or "https://" followed by the proxy server's IP address or hostname, while a SOCKS proxy URL typically starts with "socks://" followed by the proxy server's IP address or hostname.
3. Analyze the proxy server's behavior: You can also determine the type of proxy by observing how it handles incoming and outgoing requests. For instance, an HTTP proxy will typically forward HTTP and HTTPS requests, while a SOCKS proxy can handle any type of traffic, including non-HTTP protocols.
4. Use online tools or software: There are various online tools and software applications that can help you identify the type of proxy. By connecting to the proxy server and analyzing the traffic, these tools can often determine the protocol used by the proxy.
5. Consult the proxy provider: If you are unsure about the type of proxy you are using, you can always consult the proxy provider or the documentation that came with the proxy server. They should be able to provide you with the necessary information about the proxy type.
What else…