IP | Country | PORT | ADDED |
---|---|---|---|
41.230.216.70 | tn | 80 | 42 minutes ago |
50.168.72.114 | us | 80 | 42 minutes ago |
50.207.199.84 | us | 80 | 42 minutes ago |
50.172.75.123 | us | 80 | 42 minutes ago |
50.168.72.122 | us | 80 | 42 minutes ago |
194.219.134.234 | gr | 80 | 42 minutes ago |
50.172.75.126 | us | 80 | 42 minutes ago |
50.223.246.238 | us | 80 | 42 minutes ago |
178.177.54.157 | ru | 8080 | 42 minutes ago |
190.58.248.86 | tt | 80 | 42 minutes ago |
185.132.242.212 | ru | 8083 | 42 minutes ago |
62.99.138.162 | at | 80 | 42 minutes ago |
50.145.138.156 | us | 80 | 42 minutes ago |
202.85.222.115 | cn | 18081 | 42 minutes ago |
120.132.52.172 | cn | 8888 | 42 minutes ago |
47.243.114.192 | hk | 8180 | 42 minutes ago |
218.252.231.17 | hk | 80 | 42 minutes ago |
50.175.123.233 | us | 80 | 42 minutes ago |
50.175.123.238 | us | 80 | 42 minutes ago |
50.171.122.27 | us | 80 | 42 minutes ago |
Simple tool for complete proxy management - purchase, renewal, IP list update, binding change, upload lists. With easy integration into all popular programming languages, PapaProxy API is a great choice for developers looking to optimize their systems.
Quick and easy integration.
Full control and management of proxies via API.
Extensive documentation for a quick start.
Compatible with any programming language that supports HTTP requests.
Ready to improve your product? Explore our API and start integrating today!
And 500+ more programming tools and languages
To pass a Selenium WebDriver instance to a Python decorator, you can create a custom decorator that takes the WebDriver instance as an argument. Here's an example of how to do this:
First, create a custom decorator that accepts the WebDriver instance:
def webdriver_decorator(driver):
def decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
return func(driver, *args, **kwargs)
return wrapper
return decorator
Create a function that takes the WebDriver instance as an argument and performs the desired action:
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
def my_function(driver, search_query):
driver.get('https://example.com')
search_box = WebDriverWait(driver, 10).until(EC.visibility_of_element_located((By.ID, 'search-box')))
search_box.send_keys(search_query)
search_box.send_keys(Keys.RETURN)
Apply the custom decorator to the function and pass the WebDriver instance:
@webdriver_decorator
def my_function_with_decorator(driver, search_query):
return my_function(driver, search_query)
Now you can use the decorated function and pass the WebDriver instance:
driver = webdriver.Chrome()
driver.get('https://example.com')
search_results = my_function_with_decorator(driver, 'your search query')
In this example, the my_function_with_decorator function is the same as the my_function function, but it is wrapped by the webdriver_decorator. When you call my_function_with_decorator, you need to pass the WebDriver instance as the first argument.
Checking data integrity in the User Datagram Protocol (UDP) can be challenging, as UDP is a connectionless protocol and does not provide built-in mechanisms for ensuring data integrity, such as error detection or correction. However, there are several methods to check data integrity in UDP:
1. Checksum: UDP uses a simple checksum mechanism to detect errors in transmitted data. The sender calculates the checksum of the UDP header and data using a cyclic redundancy check (CRC) algorithm. The checksum value is then included in the UDP header and transmitted along with the data. Upon receiving the data, the receiver calculates the checksum of the received data and compares it to the checksum value in the UDP header. If the values do not match, the receiver can assume that an error has occurred during transmission. However, this checksum mechanism does not protect against all types of errors or attacks.
2. Application-level checksum: Since UDP does not provide robust error detection, many applications implement their own checksum or hash functions at the application layer to verify data integrity. For example, when transmitting sensitive data, an application can calculate a hash value of the data using an algorithm like MD5 or SHA-1 and include the hash value in the transmitted data. The receiver can then calculate the hash value of the received data and compare it to the included value to ensure data integrity.
3. Secure UDP: To ensure data integrity and security, you can use a secure version of UDP, such as Datagram Transport Layer Security (DTLS) or Secure Real-time Transport Protocol (SRTP). These protocols provide authentication, encryption, and integrity checks to protect data during transmission.
4. Application-level protocols: Some applications use specific protocols that provide additional data integrity checks, such as the Real-time Transport Protocol (RTP) for audio and video streaming. RTP includes sequence numbers and timestamps to help detect lost or out-of-order packets and ensure proper playback.
In summary, checking data integrity in UDP can be achieved through various methods, such as using the built-in checksum mechanism, implementing application-level checksums or hashes, employing secure UDP protocols, or utilizing application-level protocols that provide additional data integrity checks.
If your Java UDP server does not accept more than one packet, there might be an issue with the way you are handling incoming packets or with the network configuration. To troubleshoot and resolve this issue, you can follow these steps:
1. Check your server code to ensure that it is correctly handling incoming packets. Make sure you are not accidentally discarding or overwriting packets.
2. Verify that there are no firewalls or network configurations blocking the UDP packets. UDP is a connectionless protocol, and packets may be dropped by firewalls or routers if they are not allowed.
3. Ensure that the client is sending packets correctly. Check if the client is using the correct IP address and port number for the server, and that it is not sending packets too quickly, causing them to be dropped or lost.
4. Increase the buffer size of the UDP socket in your server code. By default, the buffer size is often too small to handle multiple packets efficiently. You can increase the buffer size by using the setSoTimeout() method on the DatagramSocket object. For example:
DatagramSocket serverSocket = new DatagramSocket(port);
serverSocket.setSoTimeout(timeout); // Set a timeout value in milliseconds
5. Implement a multithreaded or asynchronous server to handle multiple incoming packets simultaneously. This will allow your server to accept and process multiple packets at the same time. Here's an example of a multithreaded UDP server in Java:
import java.net.*;
import java.io.*;
public class MultithreadedUDPServer {
public static void main(String[] args) throws IOException {
int port = 12345;
DatagramSocket serverSocket = new DatagramSocket(port);
while (true) {
byte[] receiveBuffer = new byte[1024];
DatagramPacket receivePacket = new DatagramPacket(receiveBuffer, receiveBuffer.length);
serverSocket.receive(receivePacket);
handlePacket(receivePacket, serverSocket);
}
}
private static void handlePacket(DatagramPacket receivePacket, DatagramSocket serverSocket) throws IOException {
byte[] sendBuffer = new byte[1024];
InetAddress clientAddress = receivePacket.getAddress();
int clientPort = receivePacket.getPort();
int packetLength = receivePacket.getLength();
System.arraycopy(receiveBuffer, 0, sendBuffer, 0, packetLength);
DatagramPacket sendPacket = new DatagramPacket(sendBuffer, packetLength, clientAddress, clientPort);
serverSocket.send(sendPacket);
}
}
By following these steps, you should be able to resolve the issue with your Java UDP server not accepting more than one packet.
Most users use A-Parser for this purpose. It is one of the best applications for checking web applications. There is a corresponding tab, "Proxy server", in the standard menu of A-Parser. It is where you can specify the settings for the connection. And in the "Tools" section you can use parameters for parsing.
After editing is complete, the proxy must be disabled in order to send the video for color correction. To do this, select all the proxies in the project window and choose the "Switch offline" command from the context menu. Then, after making sure that the "Media files remain on disk" option is active, click "Ok". If after that the program monitor window is filled with red color, do not be frightened, it is normal.
What else…