IP | Country | PORT | ADDED |
---|---|---|---|
50.175.212.74 | us | 80 | 23 minutes ago |
189.202.188.149 | mx | 80 | 23 minutes ago |
50.171.187.50 | us | 80 | 23 minutes ago |
50.171.187.53 | us | 80 | 23 minutes ago |
50.223.246.226 | us | 80 | 23 minutes ago |
50.219.249.54 | us | 80 | 23 minutes ago |
50.149.13.197 | us | 80 | 23 minutes ago |
67.43.228.250 | ca | 8209 | 23 minutes ago |
50.171.187.52 | us | 80 | 23 minutes ago |
50.219.249.62 | us | 80 | 23 minutes ago |
50.223.246.238 | us | 80 | 23 minutes ago |
128.140.113.110 | de | 3128 | 23 minutes ago |
67.43.236.19 | ca | 17929 | 23 minutes ago |
50.149.13.195 | us | 80 | 23 minutes ago |
103.24.4.23 | sg | 3128 | 23 minutes ago |
50.171.122.28 | us | 80 | 23 minutes ago |
50.223.246.239 | us | 80 | 23 minutes ago |
72.10.164.178 | ca | 16727 | 23 minutes ago |
50.232.104.86 | us | 80 | 23 minutes ago |
50.172.39.98 | us | 80 | 23 minutes ago |
Simple tool for complete proxy management - purchase, renewal, IP list update, binding change, upload lists. With easy integration into all popular programming languages, PapaProxy API is a great choice for developers looking to optimize their systems.
Quick and easy integration.
Full control and management of proxies via API.
Extensive documentation for a quick start.
Compatible with any programming language that supports HTTP requests.
Ready to improve your product? Explore our API and start integrating today!
And 500+ more programming tools and languages
To speed up scraping by leveraging asynchronous programming in Python, you can use the asyncio library along with asynchronous HTTP requests. The aiohttp library is commonly used for asynchronous HTTP requests. Here's a basic example to help you get started:
Install Required Packages:
pip install aiohttp
Asynchronous Scraping Script:
import asyncio
import aiohttp
async def scrape_url(session, url):
try:
async with session.get(url) as response:
if response.status == 200:
content = await response.text()
# Process the content as needed
print(f"Scraped {url}: {len(content)} characters")
else:
print(f"Failed to scrape {url}. Status code: {response.status}")
except Exception as e:
print(f"Error scraping {url}: {str(e)}")
async def main():
urls_to_scrape = [
'https://example.com/page1',
'https://example.com/page2',
# Add more URLs as needed
]
async with aiohttp.ClientSession() as session:
tasks = [scrape_url(session, url) for url in urls_to_scrape]
await asyncio.gather(*tasks)
if __name__ == "__main__":
asyncio.run(main())
scrape_url
to perform the scraping for a given URL.main
function creates an asynchronous HTTP session using aiohttp.ClientSession
and gathers the scraping tasks.asyncio.run(main())
line runs the main asynchronous function.Running the Script:
python your_scraper_script.py
This example demonstrates the basics of asynchronous scraping. Asynchronous programming can significantly speed up scraping tasks, especially when making multiple concurrent HTTP requests.
Keep in mind that not all websites support asynchronous scraping, and some may have restrictions or rate limiting. Always adhere to the website's terms of service, and consider adding delays between requests to avoid overloading the server.
To run Firefox with Selenium and connected extensions, you'll need to use the FirefoxDriverService and FirefoxOptions. You can also set the path to the Firefox executable and the path to the extensions' .xpi files using the FirefoxBinary and FirefoxProfile classes. Here's an example of how to do this:
Install the required NuGet packages:
Install-Package OpenQA.Selenium.Firefox.WebDriver -Version 3.141.0
Install-Package OpenQA.Selenium.Support.UI -Version 3.141.0
Create a method to add extensions to the Firefox profile:
using OpenQA.Selenium;
using OpenQA.Selenium.Firefox;
using System.IO;
using System.Linq;
public static IWebDriver CreateFirefoxDriverWithExtensions(string[] extensionPaths)
{
var firefoxOptions = new FirefoxOptions();
var firefoxBinary = new FirefoxBinary(Path.GetDirectoryName(FirefoxDriverService.DefaultServicePath));
var firefoxProfile = new FirefoxProfile();
// Add extensions to the Firefox profile
foreach (var extensionPath in extensionPaths)
{
var extensionFile = new FileInfo(extensionPath);
if (extensionFile.Exists)
{
firefoxProfile.AddExtension(extensionPath);
}
}
firefoxOptions.BinaryLocation = firefoxBinary.Path;
firefoxOptions.Profile = firefoxProfile;
// Start the FirefoxDriverService with the specified Firefox binary
var driverService = FirefoxDriverService.CreateDefaultService(firefoxBinary.Path, FirefoxDriverService.DefaultPort);
driverService.EnableVerboseLogging = true;
// Create the FirefoxDriver with the specified options
var driver = new FirefoxDriver(driverService, firefoxOptions);
return driver;
}
Use the CreateFirefoxDriverWithExtensions method in your test code:
using OpenQA.Selenium;
using System;
namespace SeleniumFirefoxExtensionsExample
{
class Program
{
static void Main(string[] args)
{
// Paths to the extensions' .xpi files
string[] extensionPaths = new[]
{
@"path\to\extension1.xpi",
@"path\to\extension2.xpi"
};
// Create the FirefoxDriver with connected extensions
using (var driver = CreateFirefoxDriverWithExtensions(extensionPaths))
{
// Set up the WebDriver
driver.Manage().Window.Maximize();
// Navigate to the target web page
driver.Navigate().GoToUrl("https://www.example.com");
// Perform any additional actions as needed
// Close the browser
driver.Quit();
}
}
}
}
In this example, we first create a method called CreateFirefoxDriverWithExtensions that takes an array of extension paths as input. Inside the method, we set up the FirefoxOptions, FirefoxBinary, and FirefoxProfile to include the specified extensions. Then, we start the FirefoxDriverService with the specified Firefox binary and create the FirefoxDriver with the specified options.
In the test code, we call the CreateFirefoxDriverWithExtensions method with the paths to the extensions' .xpi files and use the returned IWebDriver instance to interact with the browser.
Remember to replace "path\to\extension1.xpi" and "path\to\extension2.xpi" with the actual paths to the extensions' .xpi files you want to connect.
In CentOS, if there is no graphical interface (from the terminal), proxy configuration is done through the export http_proxy=http://User:Pass@Proxy:Port/ command. Accordingly, User is the user, Pass is the password to identify you, Proxy is the IP address of the proxy, and Port is the port number. If you have DE, the configuration can be done via Network Manager (as in any other Linux distribution).
A proxy is a service that allows access to websites blocked in different countries, while hiding your own IP address. It is a kind of intermediary between the end server and the owner's computer. A VPN provides an encrypted connection to the network, which not only allows you to keep your privacy, hide your IP address, encrypt Internet traffic, but also bypasses firewalls.
You cannot use a proxy server in Outlook (for security reasons). Therefore, it is possible to organize a local proxy with traffic forwarding through the port. Or you can use third-party tools such as ProxyCap.
What else…