IP | Country | PORT | ADDED |
---|---|---|---|
212.108.155.170 | cy | 9090 | 6 minutes ago |
176.31.110.126 | fr | 45517 | 6 minutes ago |
67.43.228.250 | ca | 28855 | 6 minutes ago |
128.140.113.110 | de | 4145 | 6 minutes ago |
31.130.127.215 | ru | 5678 | 6 minutes ago |
72.10.164.178 | ca | 10055 | 6 minutes ago |
67.201.33.10 | us | 25283 | 6 minutes ago |
46.105.105.223 | fr | 18579 | 6 minutes ago |
51.89.21.99 | gb | 59577 | 6 minutes ago |
41.230.216.70 | tn | 80 | 6 minutes ago |
168.126.68.80 | kr | 80 | 6 minutes ago |
89.161.90.203 | pl | 5678 | 6 minutes ago |
62.103.186.66 | gr | 4153 | 6 minutes ago |
72.195.34.59 | us | 4145 | 6 minutes ago |
37.128.107.102 | pl | 4145 | 6 minutes ago |
45.177.80.214 | ar | 1080 | 6 minutes ago |
67.43.236.20 | ca | 12651 | 6 minutes ago |
185.49.31.205 | pl | 8080 | 6 minutes ago |
213.143.113.82 | at | 80 | 6 minutes ago |
103.216.50.224 | kh | 8080 | 6 minutes ago |
Simple tool for complete proxy management - purchase, renewal, IP list update, binding change, upload lists. With easy integration into all popular programming languages, PapaProxy API is a great choice for developers looking to optimize their systems.
Quick and easy integration.
Full control and management of proxies via API.
Extensive documentation for a quick start.
Compatible with any programming language that supports HTTP requests.
Ready to improve your product? Explore our API and start integrating today!
And 500+ more programming tools and languages
The provider, when the user uses a VPN, "sees" only the encrypted traffic, as well as the address of the remote server to which the request is sent. But it is impossible to determine which site the user is visiting and what data is being sent.
In Key Collector settings, the user can specify parameters of the proxy server through which the program will connect to the network. In the application window, first select "Settings", then go to the "Network" tab and check "Use proxy". Its parameters can be set either manually or through a configuration file.
To upload files using Selenium, you can follow these general steps:
Locate the file input element: Use Selenium's methods like find_element_by_id(), find_element_by_name(), or find_element_by_xpath() to locate the file input element on the webpage.
Send keys to the file input element: Use the send_keys() method to send the file path to the file input element. This will upload the file.
Here's an example using Python:
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
# Replace 'your_url' with the URL of the webpage you want to open
driver = webdriver.Chrome()
driver.get('your_url')
# Replace 'file_input_id' with the ID of the file input element on the webpage
file_input = driver.find_element(By.ID, 'file_input_id')
# Replace 'path/to/your/file' with the path to the file you want to upload
file_path = 'path/to/your/file'
file_input.send_keys(file_path)
# Rest of your code
driver.quit()
Keep in mind that the specific method to locate the file input element and the file input element's ID or name may vary depending on the webpage you're working with.
Additionally, some websites may have specific requirements or restrictions for uploading files. In such cases, you may need to use JavaScript or other methods to bypass these restrictions. If you encounter any issues or need further assistance, please provide more information about the webpage and the specific error message or problem you're facing.
To read a video stream received via UDP, you can follow these steps:
1. Choose a programming language: Python, C++, Java, or any other language that supports UDP communication.
2. Set up a UDP server: Create a UDP server that listens for incoming video stream data. This server will receive the video stream packets and store them in memory or on disk.
3. Parse the UDP packets: The video stream data will be sent in a series of UDP packets. You will need to parse these packets to extract the video frames and reassemble them into a complete video stream.
4. Decode the video frames: Once you have the video frames, you need to decode them to convert them from their compressed format (e.g., H.264, MPEG-4) to a raw video format that can be displayed.
5. Display or save the video stream: After decoding the video frames, you can either display them in real-time or save them to a file for later playback.
Here's an example of how you might implement this in Python using the socket and cv2 libraries:
import socket
import cv2
import struct
# Create a UDP server socket
server_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
server_socket.bind(('0.0.0.0', 12345))
# Variables to store the video stream
frame_length = 0
frame_data = b''
# Loop to receive video stream packets
while True:
data, address = server_socket.recvfrom(1024)
frame_length += struct.unpack('I', data[:4])[0]
frame_data += data[4:]
# Check if we have enough data for a complete frame
if frame_length > 0 and len(frame_data) >= frame_length:
# Extract the video frame
frame = cv2.imdecode(np.frombuffer(frame_data[:frame_length], dtype=np.uint8), cv2.IMREAD_COLOR)
# Display or save the video frame
cv2.imshow('Video Stream', frame)
cv2.waitKey(1)
# Reset variables for the next frame
frame_length = 0
frame_data = b''
Note that this is a simplified example and assumes that the video stream is using a specific protocol for packetization and framing. In practice, you will need to adapt this code to the specific format of the video stream you are receiving. Additionally, you may need to handle network errors, packet loss, and other issues that can arise during UDP communication.
In UDP, there is no built-in mechanism to know the size of an incoming packet before receiving it. The UDP protocol is a connectionless protocol, meaning it does not establish a connection between the sender and receiver before sending data. This makes UDP fast and efficient but also means that the receiver has no way to know the size of the incoming packet in advance.
When you receive a UDP packet, you can determine its size by examining the received data. In most programming languages, you can access the received data as a byte array or buffer. The size of the packet can be calculated by finding the length of the received data.
For example, in Python, you can use the recvfrom() function to receive a UDP packet and the len() function to calculate its size:
import socket
# Create a UDP socket
server_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
# Receive a UDP packet
data, address = server_socket.recvfrom(1024)
# Calculate the size of the received packet
packet_size = len(data)
print(f"Received packet of size: {packet_size} bytes")
In this example, the recvfrom() function receives a packet up to 1024 bytes in size, and the len() function calculates the length of the received data, which is the size of the packet.
Keep in mind that the maximum size of a UDP packet is limited by the maximum transmission unit (MTU) of the underlying network, which is typically 1500 bytes. However, it's always a good idea to handle cases where the received packet size exceeds your expectations, as this may indicate a packet fragmentation issue or an error in the communication.
What else…