IP | Country | PORT | ADDED |
---|---|---|---|
213.143.113.82 | at | 80 | 48 minutes ago |
41.230.216.70 | tn | 80 | 48 minutes ago |
82.119.96.254 | sk | 80 | 48 minutes ago |
50.175.123.235 | us | 80 | 48 minutes ago |
72.10.160.91 | ca | 12411 | 48 minutes ago |
50.168.61.234 | us | 80 | 48 minutes ago |
203.99.240.182 | jp | 80 | 48 minutes ago |
50.231.110.26 | us | 80 | 48 minutes ago |
50.171.122.28 | us | 80 | 48 minutes ago |
183.240.46.42 | cn | 80 | 48 minutes ago |
62.99.138.162 | at | 80 | 48 minutes ago |
80.120.130.231 | at | 80 | 48 minutes ago |
50.175.123.232 | us | 80 | 48 minutes ago |
50.223.246.237 | us | 80 | 48 minutes ago |
190.58.248.86 | tt | 80 | 48 minutes ago |
105.214.49.116 | za | 5678 | 48 minutes ago |
50.218.208.13 | us | 80 | 48 minutes ago |
50.207.199.80 | us | 80 | 48 minutes ago |
50.145.138.156 | us | 80 | 48 minutes ago |
203.99.240.179 | jp | 80 | 48 minutes ago |
Simple tool for complete proxy management - purchase, renewal, IP list update, binding change, upload lists. With easy integration into all popular programming languages, PapaProxy API is a great choice for developers looking to optimize their systems.
Quick and easy integration.
Full control and management of proxies via API.
Extensive documentation for a quick start.
Compatible with any programming language that supports HTTP requests.
Ready to improve your product? Explore our API and start integrating today!
And 500+ more programming tools and languages
Select the "Proxy" tab in the "Network" window, then click on Win+C and find the "Settings" item. In the window that opens, stop at "Change computer settings" and go to "Network". Select the "Proxy" line here and disable the proxy functionality.
To install Selenium WebDriver Chromedriver on Linux using Python, follow these steps:
Install Chromedriver:
First, you need to download the Chromedriver binary for your Linux distribution from the Chromedriver download page. Choose the appropriate version for your Linux distribution (e.g., Ubuntu, Debian, Fedora, etc.) and download the .deb, .rpm, or .tar.gz file.
Install Chromedriver using .deb or .rpm package:
If you downloaded the .deb or .rpm package, you can install it using the following commands:
For .deb package:
sudo dpkg -i chromedriver.deb
For .rpm package:
sudo yum -y install chromedriver.rpm
Install Chromedriver using .tar.gz package:
If you downloaded the .tar.gz package, you can install it using the following commands:
Extract the package:
tar -xvf chromedriver.tar.gz
Move the Chromedriver binary to a desired location (e.g., /usr/local/bin):
sudo mv chromedriver /usr/local/bin/
Set the executable permission for the Chromedriver binary:
sudo chmod +x /usr/local/bin/chromedriver
Verify the installation:
To verify that Chromedriver is installed correctly, you can run the following command in the terminal:
chromedriver --version
This should display the Chromedriver version.
Install Selenium Python package:
Finally, install the Selenium Python package using pip:
pip install selenium
Now you have installed Selenium WebDriver Chromedriver on your Linux system using Python. You can use the following Python code to set up the Chrome WebDriver and start a browser session:
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.chrome.options import Options
# Set up the Chrome WebDriver
chrome_options = Options()
service = Service('/usr/local/bin/chromedriver')
driver = webdriver.Chrome(service=service, options=chrome_options)
# Navigate to the target web page
driver.get("https://www.example.com")
# Close the browser
driver.quit()
Remember to replace "/usr/local/bin/chromedriver" with the actual path to the Chromedriver binary on your system.
If your Java UDP server does not accept more than one packet, there might be an issue with the way you are handling incoming packets or with the network configuration. To troubleshoot and resolve this issue, you can follow these steps:
1. Check your server code to ensure that it is correctly handling incoming packets. Make sure you are not accidentally discarding or overwriting packets.
2. Verify that there are no firewalls or network configurations blocking the UDP packets. UDP is a connectionless protocol, and packets may be dropped by firewalls or routers if they are not allowed.
3. Ensure that the client is sending packets correctly. Check if the client is using the correct IP address and port number for the server, and that it is not sending packets too quickly, causing them to be dropped or lost.
4. Increase the buffer size of the UDP socket in your server code. By default, the buffer size is often too small to handle multiple packets efficiently. You can increase the buffer size by using the setSoTimeout() method on the DatagramSocket object. For example:
DatagramSocket serverSocket = new DatagramSocket(port);
serverSocket.setSoTimeout(timeout); // Set a timeout value in milliseconds
5. Implement a multithreaded or asynchronous server to handle multiple incoming packets simultaneously. This will allow your server to accept and process multiple packets at the same time. Here's an example of a multithreaded UDP server in Java:
import java.net.*;
import java.io.*;
public class MultithreadedUDPServer {
public static void main(String[] args) throws IOException {
int port = 12345;
DatagramSocket serverSocket = new DatagramSocket(port);
while (true) {
byte[] receiveBuffer = new byte[1024];
DatagramPacket receivePacket = new DatagramPacket(receiveBuffer, receiveBuffer.length);
serverSocket.receive(receivePacket);
handlePacket(receivePacket, serverSocket);
}
}
private static void handlePacket(DatagramPacket receivePacket, DatagramSocket serverSocket) throws IOException {
byte[] sendBuffer = new byte[1024];
InetAddress clientAddress = receivePacket.getAddress();
int clientPort = receivePacket.getPort();
int packetLength = receivePacket.getLength();
System.arraycopy(receiveBuffer, 0, sendBuffer, 0, packetLength);
DatagramPacket sendPacket = new DatagramPacket(sendBuffer, packetLength, clientAddress, clientPort);
serverSocket.send(sendPacket);
}
}
By following these steps, you should be able to resolve the issue with your Java UDP server not accepting more than one packet.
To optimize the performance of Selenium with Chrome and Chromedriver, you can consider several strategies:
Latest Versions:
Ensure that you are using the latest version of Chrome and Chromedriver. They are frequently updated to include performance improvements and bug fixes.
Chromedriver Version Compatibility:
Make sure that the version of Chromedriver you are using is compatible with the version of Chrome installed on your machine. Mismatched versions may lead to unexpected behavior.
Headless Mode:
If you don't need to see the browser window during automation, consider running Chrome in headless mode. Headless mode can significantly improve the speed of browser automation.
chrome_options.add_argument('--headless')
Chrome Options:
Experiment with different Chrome options to see how they affect performance. For example, you can set options related to GPU usage, image loading, and more.
chrome_options.add_argument('--disable-gpu')
chrome_options.add_argument('--blink-settings=imagesEnabled=false')
Page Loading Strategy:
Adjust the page loading strategy. For example, you can set pageLoadStrategy to 'eager' or 'none' if it fits your use case.
chrome_options.add_argument('--pageLoadStrategy=eager')
Timeouts:
Adjust timeouts appropriately. For example, setting script timeouts or implicit waits can help to avoid unnecessary waiting times.
driver.set_script_timeout(10)
driver.implicitly_wait(5)
Parallel Execution:
Consider parallel execution of tests. Running tests in parallel can significantly reduce overall execution time.
Browser Window Size:
Set a specific window size to avoid unnecessary rendering.
chrome_options.add_argument('window-size=1920x1080')
Disable Extensions:
Disable unnecessary Chrome extensions during testing.
chrome_options.add_argument('--disable-extensions')
Logging:
Enable logging to identify any issues or bottlenecks.
service_args = ['--verbose', '--log-path=/path/to/chromedriver.log']
service = ChromeService(executable_path='/path/to/chromedriver', service_args=service_args)
To assign a proxy server to an Android or iOS access point, follow these steps:
Open the "Settings" section. Go to the "Wi-Fi" tab. Select your access point. Click on "Proxy". Use manual setup and specify the data of proxy. Save the settings.
What else…