IP | Country | PORT | ADDED |
---|---|---|---|
82.119.96.254 | sk | 80 | 40 minutes ago |
91.92.155.207 | ch | 3128 | 40 minutes ago |
190.58.248.86 | tt | 80 | 40 minutes ago |
83.1.176.118 | pl | 80 | 40 minutes ago |
23.247.136.254 | sg | 80 | 40 minutes ago |
87.248.129.26 | ae | 80 | 40 minutes ago |
158.255.77.169 | ae | 80 | 40 minutes ago |
212.127.93.185 | pl | 8081 | 40 minutes ago |
213.143.113.82 | at | 80 | 40 minutes ago |
194.158.203.14 | by | 80 | 40 minutes ago |
62.99.138.162 | at | 80 | 40 minutes ago |
121.182.138.71 | kr | 80 | 40 minutes ago |
168.196.214.187 | br | 80 | 40 minutes ago |
50.114.33.43 | kh | 8080 | 40 minutes ago |
213.33.126.130 | at | 80 | 40 minutes ago |
103.118.46.174 | kh | 8080 | 40 minutes ago |
38.54.71.67 | np | 80 | 40 minutes ago |
194.219.134.234 | gr | 80 | 40 minutes ago |
103.216.50.224 | kh | 8080 | 40 minutes ago |
122.116.29.68 | 4145 | 40 minutes ago |
Simple tool for complete proxy management - purchase, renewal, IP list update, binding change, upload lists. With easy integration into all popular programming languages, PapaProxy API is a great choice for developers looking to optimize their systems.
Quick and easy integration.
Full control and management of proxies via API.
Extensive documentation for a quick start.
Compatible with any programming language that supports HTTP requests.
Ready to improve your product? Explore our API and start integrating today!
And 500+ more programming tools and languages
To send a SIP INVITE request to a server using UDP, you need to follow these steps:
1. Create a SIP INVITE message: The SIP INVITE message is a request to establish a new session between two parties. It contains the caller's contact information, the callee's contact information, and other relevant headers. You can use a library like Twisted or PySIP to create a SIP INVITE message in Python.
2. Set up a UDP socket: In Python, you can use the socket module to create a UDP socket. Create a socket object with the socket.SOCK_DGRAM parameter to indicate that it's a datagram socket.
import socket
# Create a UDP socket
udp_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
3. Configure the server address and port: You need to know the IP address and port number of the SIP server you want to send the INVITE message to.
# Server address and port
server_address = ('sip.server.ip', 5060)
4. Send the SIP INVITE message: Use the sendto method of the UDP socket to send the SIP INVITE message to the server.
# Send the SIP INVITE message to the server
udp_socket.sendto(sip_invite_message, server_address)
5.Close the UDP socket: After sending the SIP INVITE message, close the UDP socket to free up resources.
# Close the UDP socket
udp_socket.close()
Here's a complete example of sending a SIP INVITE message using UDP in Python:
SIP/2.0 200 OK
Via: SIP/2.0/UDP 192.168.1.1:5060;branch=z9hG4bKkDjgjhFg5
From: "John Doe" ;tag=12345
To: "Jane Smith"
Call-ID: 123456789012345
CSeq: 1 INVITE
Contact:
Content-Type: application/sdp
Content-Length: 200
v=0
o=JohnDoe 2890844526 2890844526 IN IP4 192.168.1.1
s=Example Session
c=IN IP4 192.168.1.1
t=0 0
m=audio 3456 RTP/AVPF 97
In Qt, you can use the QUdpSocket class to handle incoming UDP packets and the QDataStream class to parse the QByteArray into a bitfield structure. Here's an example of how to accept and parse a UDP QByteArray into a bitfield structure in Qt:
1. First, create a structure to represent the bitfield:
struct Bitfield {
unsigned int field1 : 8;
unsigned int field2 : 8;
unsigned int field3 : 8;
unsigned int field4 : 8;
};
2. Next, create a QUdpSocket object and bind it to a specific port:
QUdpSocket udpSocket;
if (!udpSocket.bind(QHostAddress::Any, 12345)) {
qDebug() << "Failed to bind UDP socket:" << udpSocket.errorString();
return;
}
3. In the readyRead() slot, accept incoming UDP packets and parse the QByteArray:
void MyClass::handleIncomingDatagram() {
QByteArray datagram = udpSocket.receiveDatagram();
QDataStream dataStream(&datagram, QIODevice::ReadOnly);
Bitfield bitfield;
dataStream >> bitfield;
// Process the bitfield structure as needed
qDebug() << "Received bitfield:" << bitfield.field1 << "," << bitfield.field2 << "," << bitfield.field3 << "," << bitfield.field4;
}
4. Finally, connect the readyRead() signal to the handleIncomingDatagram() slot:
connect(&udpSocket, &QUdpSocket::readyRead, this, &MyClass::handleIncomingDatagram);
In this example, the handleIncomingDatagram() slot is called whenever a new UDP packet is received. The slot accepts the incoming datagram, parses it into a bitfield structure using QDataStream, and processes the bitfield as needed.
Make sure to include the necessary headers in your code:
#include
#include
#include
#include
This example assumes that the incoming UDP packet contains exactly 4 bytes, which is enough to store the bitfield structure. If the packet contains more data, you'll need to handle it accordingly.
An HTTP proxy works as an intermediary between a client (usually a web browser) and a web server. It receives HTTP requests from the client, forwards them to the appropriate web server, and then returns the web server's response back to the client. The primary purpose of an HTTP proxy is to provide various benefits such as privacy, caching, and content filtering.
To create a local proxy server using Privoxy, follow these steps:
1. Install Privoxy.
2. Edit the configuration file: Uncomment the listen-address, listen-port, forward-suffix, and destination-server lines.
3. Save and restart Privoxy.
4. Configure your browser to use the local proxy server.
5. Test the local proxy server.
Ensure you have proper security measures in place, as creating a local proxy server can have privacy implications.
To obtain an OAuth2 access token for an unknown service, you will need to follow these general steps. Keep in mind that the exact process may vary depending on the service provider and their OAuth2 implementation.
1. Identify the service provider: Determine the service provider you want to access using OAuth2. This could be a third-party application or API.
2. Check the service provider's documentation: Visit the service provider's official documentation or developer portal to find information about their OAuth2 implementation, including the authorization endpoint, token endpoint, and any required scopes or parameters.
3. Register your application: In most cases, you will need to register your application with the service provider to obtain a client ID and client secret. This is usually done through a dedicated developer portal or console. During registration, you may need to provide information about your application, such as its name, description, and redirect URIs.
4. Obtain authorization code: Direct the user to the service provider's authorization endpoint with the necessary parameters, such as the client ID, client secret, and the desired scopes. The user will be prompted to log in and grant your application access to the requested permissions. Upon successful authentication, the service provider will redirect the user to your application's redirect URI with an authorization code in the URL.
5. Exchange authorization code for an access token: Use your application's backend server to make a POST request to the service provider's token endpoint with the following parameters: client ID, client secret, authorization code, redirect URI, and (optionally) a grant type (usually "authorization_code"). The service provider will respond with an access token, which can be used to authenticate requests to their API on behalf of the user.
6. Store and use the access token: Save the access token securely in your application or cache, and use it in the Authorization header of your API requests to the service provider. Access tokens typically have an expiration time, so you may need to periodically refresh them using a refresh token or by repeating the authorization flow.
What else…